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Energy Gaps and Elementary Excitations 
for Certain VBS-Quantum Antiferromagnets 
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It is shown for a class of antiferromagnetic Hamiltonians how one can get lower 
bounds for the energy gap above the ground state by diagonalizing a finite 
system. This method is applied to certain spin chains (including a spin-1 chain). 
Trial wave functons are proposed for the elementary excitations and are tested 
in the case of the spin-1 chain. 
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1. I N T R O D U C T I O N  

For the ground state properties of the isotropic Heisenberg antiferro- 
magnetic spin chain it seems to be crucial whether the spin per site is half- 
integral or integral. Whereas for half-integral spin a gapless ground state is 
expected, Haldane (1) argued that in the integral case a gap immediately 
above the ground state occurs. 

The first rigorous result was obtained in ref. 2 for spin t if one replaces 
the usual Heisenberg interacton Si'Si+l by the projection P2(Si, Si+l) on 
the two spin states with total spin 2. If one makes this replacement, one 
can calculate the exact ground state (called VBS state) and the ground 
state energy (namely, 0). The VBS state can be constructed for every lattice 
with coordination number z if the spin per site is S = z/2 and the inter- 
action is Po = P2s(S~, Sfl, the projection on the highest possible total spin 
of two neighboring spins. 

Kennedy et aL ~2'8) have shown the existence of the energy gap for the 
spin-1 chain and the exponential decay of the spin correlation function for 
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the spin-1 chain, the hexagonal lattice (spin 3/2), and the square lattice 
(spin 2). Therefore one strongly believes that there is also an energy gap for 
the latter two lattices. 

One can also consider systems with S > z/2. Again one knows all the 
ground states, but now the degeneracy of the ground state is infinite for the 
infinite system. In this paper I will show that there is an energy gap for the 
spin chains with spin S = 1, 3/2, 2, or 5/2 per site. More precisely, let 

N 

Hs, N = ~ P2s(S,, S,+1) (1.1) 
i = 1  

where SN+I= S~, be the Hamiltonian for N sites and periodic boundary 
conditions, and let es. N be the smallest eigenvalue larger than zero. We 
shall derive lower bounds for es, N independent of N. Affleck and Lieb (7) 
have shown for a wide class of Hamiltonians that for a chain with half- 
integral spin either there is no energy gap or the ground state is degenerate. 
Therefore our model (for S =  3/2 or 5/2) is an example where the second 
possibility is realized. 

It is also interesting to get a good picture of the elementary excita- 
tions. In Section 3 I propose trial wave functions for them; the energy gap 
obtained by this approximation fits well with numerical results in the case 
of the spin-1 chain. 

Let us now write down the form of the VBS states. For  that it is 
convenient to use the following representation of the spin-S states(l~ 
Consider the monomials in two variables 

u2S-mv m, m = 0 ,  1 ..... 2S, u, v e C  (1.2) 

It is easy to see that they span a space that is invariant and irreducible 
under SU(2). The corresponding spin equals S. If we restrict the generators 
of SU(2) to this space, then they can be written as 

s (1.3) 

The integration measure that has to be used is the SO(4)-invariant measure 
of S3={(u , v ) eCZ[ lu lZ+lv l2=l } ,  which is also SU(2) invariant. 
However, for functions which are invariant under the U(1) transform 
(u,v)F--~(ei'u, ei~v), ~ e R ,  we can carry out the integration over S 2 by 
using the solid angle representation 

Oei(~/2), v = s i n ~ e  i(~/2) (1.4) U = C O S - ~  
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The norms of the states in (1.2) can be calculated by the formula 

Is k! l! 2 [ul2k Ivj2' dr2 = ( l+k)!  ( l + k +  1) (1.5) 

where ds is the SO(3)-invariant measure on S 2 normed by 

s2 ds = 1 (1.6) 

namely dr2 = (1/4~) sin 0 dO dqL The space of N spin-S wave functions is 
now given by the polynomials p(ul,  Vx ..... us,  VN), which are homogeneous 
in every spin coordinate (ui, vi) of degree 2S. The coherent states of two 
spin-S particles with total spin .Y are given by 

2 
(Ul/)2--VlL/2)2S--J H ( O ~ * b l i ~ - ~ * l ) i ) J '  ( ~ ' f l ) E S 3  (1.7) 

i= l  

and we get a basis of these states by expanding this expression in 7 and fl 
and taking the coefficients of c~* 2S- -mf l  * m. 

Using (1.7) for J = 2S, we see that 

P 2 s ( S 1  ' ~ ~ .,rn 1 . 2 S -  m I l , m 2 . 2 S -  m2 

• U 2 rot+m2 - m  U,]v~S--m m~+m2 mv~S--(m~+,,2--,,I (1.8) 

where m runs from max(0, ml + m2 - 2S) to min(2S, ml + m2). 
Let us now consider a finite lattice L with coordination number z at 

each site, spin S = z/2 per site, and the Hamiltonian 

/4= Z P2s(&, sj) (1.9) 
( i , j ) ~ L  

Now we claim that 

0o= lq (u,vj-v,uj) (1.1o) 
( i , j ) ~ L  

is the unique ground state with eigenvalue zero. 
From (1.7) we see that H~9o=0. Furthermore, H~>0, and from 

H 0  = 0 it follows again by (1.7) and by the unique factorization theorem (s) 
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that ~p must be divisible by 0o. But since the degree per spin coordinate 
must be z, one must have 0 = const" ~bo. For the uniqueness of the ground 
state in the infinite lattice see refs. 2 and 8. 

2. REDUCTION OF THE ENERGY GAP CALCULATION 
TO FINITE-SIZE CALCULATION 

In this section I propose a method of getting lower bounds of energy 
gaps of infinite systems by diagonalizing finite systems. The method works 
if the energy gap of the finite system is larger than a certain value, which 
depends on the finite lattice. This value goes to zero if the size of the finite 
system goes to infinity. 

Define the energy gap of the infinite system by considering a lattice 
with periodic boundary conditions and letting the size of the lattice go to 
infinity. The finite system I will diagonalize, however, will have free bound- 
ary conditions. I first illustrate the idea by considering the one-dimensional 
c a s e .  

Let the Hamiltonian H be given by 

N 

H =  E Pi, i+l  ( 2 . 1 )  
i=l 

where Pi, i+I=P(Si, S~+I) acts on the two spins Si and S~+1, P is a 
projection operator and SN+I= $1 (periodic boundary conditions). If we 
know that zero is the ground state energy, then the energy gap is at least 
if and only if 

H 2 1> e H  (2.2) 

My purpose is now to show such an inequality. If one squares H, one gets 
three types of terms, namely 

P? = P ~ +  P~+ + P~+ 1,~+2Pi,,+ 1, 2P i i+ lP j  j+l  ( j>~i+2)  t,i+l , 17 1 , i + 2  , , 

The terms of the first and the third type are positive. However, this is not 
true for the terms of the second type. 

Let us now assume that we already know that the Hamiltonian 
corresponding to a system of n + 1 sites, 

i+n--1 
hn, i = Z Pj, j +  1 ( 2 . 3 )  

j= i  

where Pj, j+I = Pj+N,j+N+ 1, has the energy gap s,. Then 

h2,,i>~e,h~,i (2.4) 
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holds. We will now try to get an inequality of the form 

N 
H2>~ ~, hi i - f i l l  (2.5) 

i = l  

by adjusting ~ and fl such that we get equality for the terms of types 1 
and 2. 

Each term of type 2 appears n - 1 times in "~N 2 i = n  hn, i,  and therefore we 
must choose ~ = 1/ (n-  1). Since each term of type 1 appears n times in 
~ U  2 ~=,, h,,i, we must choose p =  1/ (n-  1). Now every term of type 3 appears 
more often in the lhs of (2.5) than in the rhs, and therefore we get the 
inequality 

H 2 ~ n ~ h 2  1 , , , i - - -  H (2.6) 
- i=1 n - 1  

Using (2.4), we get 

H2>/ en U 1 
n ~1 Z h2 . n,i n--1 

l = n  

- m H  

n -  1 ~ , H - 1 7 _  1 H = n _  e , -  H (2.7) 

Thus, H has an energy gap (independent of  N), /f e, > 1In. Using the 
numerical results in Tables I and III, we have therefore proven the 
following. 

T h e o r e m  2.1. For spins S =  1, 3/2, 2, 5/2 the Hamiltonian Hs, ~ 
has an energy gap in the limit N--* oe, and the following lower bounds for 
the energy gaps gS, N are valid: 

el, N ~> 0.248064, 

g2,N ~> 0.128138, 

e3/2, N ~ 0 .141017  

~5/2, N ~ 0 .121214  
(2.8) 

These estimates are not very good. The estimate for S = 1 is better than the 
others because we used the result for six sites for S = 1, but only for four 
sites in the other cases. 

The generalization to lattices in more dimensions is straightforward. 
Let us, for instance, examine the hexagonal lattice. Define 

H =  ~ P0 (2.9) 
( i , j ) ~ L  
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where L is a hexagonal lattice with torus boundary conditions. For  every 
sublattice Q let 

hQ= ~ Po (2.10) 
( i , j ) E Q  

As in the one-dimensional case, we obtain an inequality 

H 2 ~> ~ ~ h2(Q)-/3H (2.11) 

with suitable chosen c~ and/3 by considering the type 1 and type 2 terms. 
Here ~ runs over all translations (and all possible rotations, if Q is not 
rotatonally invariant). The three types of terms are now given by 
P~, PuPj~ + PjkP~ (i r k), 2P~Pkt ( ( i, j )  and (k ,  l )  disjoint). If Q consists 
of three sites (one site joint with two others), we must choose c~ = 1, ~ -- 3 
and we therefore get 

H 2 >~ 4 e l l -  3H = 4(5 - 3 /4)H (2.12) 

where e is the energy gap of hQ. This means that we need an energy gap 
> 3/4 for this system. The true energy gap, however is 1/2. 

The next simpler case consists of four sites (one site joined to three 
others). In this case we have to choose e = 1,/3 = 
need is > 1/2. The true value, however, is ~0.18. 

As the last example, consider sublattices Qn 
and Q~ consists of Q , _  1 and all hexagons which 

1, and the energy gap we 

, where Q1 is a hexagon 
touch Qn 1. 

The centers of the hexagons of Q n - Q n  1 form a hexagon with n 
points per side. The number of these hexagons is 6 ( n - 1 ) ;  the number  of 
boundary links is therefore 1 2 n - 6 .  The number of sites of Qn is 6n 2. It is 
now easy to calculate that Z~h2(Q,I (summation over all translations) 
contains every type 1 term 3n 2 -  n times, every type 2 term 3n 2 -  2n times, 
and every type 3 term less than 3n 2 - 2n times. If en is the gap of HQ,, we 
get therefore 

1 n 
H2 >1 3n 2 -  2n ~ h2(Q") 3n 2 -  2~ H 

/> en3--~--_~- n 3n2--2n H=3n------ ~ en 3n--1  
H (2.13) 

The smallest n such that en > 0.18 is n = 3. But Q3 has 54 sites, and that is 
much more than we can calculate on the computer. 

In principle our method works if there exists an energy gap in the case 
of free boundary conditions. It  could be, however, that there are gapless 
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excitations along the boundary. But the one-dimensional results seem to 
indicate that this is not the case. Furthermore, the exponential decay of 
spin correlation functions is true for all boundary conditions. (6) 

3. E L E M E N T A R Y  E X C I T A T I O N S  

In this section we try to find good trial wave functions for the 
elementary excitations. Consider the same Hamiltonian as in Section 1 
with periodic boundary condition and S =  z/2. Then the ground state is 
unique, its total spin is zero, and is given by 

Oo = t7[ (uivj-viuj)  (3.l) 
( i , j ) ~ L  

Now we create a "crackion" at the link (i, j }  by replacing the factor 
(uivj - viuj) by (c~* ui + fi * vi)(~* uj + fl * vj): 

O~ := (~*u~ + ~*v,)(~*uj + ~* 
vJ) tpo [ (~ , /~)es  3 ] (3.2) 

(UiVj--ViU A 

Here (~, fl) is arbitrary but fixed. The crackion has spin 1 and therefore 0a 
is othogonal to the ground state. 

We try now to get a good approximation for the elementary excitation 
by superposition of the ~0" Define tpc=~,<~,j>~cco.tpo., where c =  
(co)<~,j>~c; then we want to choose c in such a way that 
(tp~ [HI ~'c }/(tPi[ ~c ) is minimized. We observe that (0~IHI  ~kt} = 0 for 
( i , j )  ~ (k,  l}, since P m , 0 u = 0  or P,~,~,~t= 0 for all (rn, n}. Thus, we get 

( tP~ lHI0~)=  ~<~'J>]cijl2(~bulHI0iJ} (3,3) 
(0~l~ ' ,}  Z<~,j>,<~,z> C*Ckz(tPejlnl~'kZ} 

In the case of translation invariance the @'0lHI Ou) are all the same and 
the expression in (3.3) is minimized if c is the eigenvector to the largest 
eigenvalue of the matrix M,),kt = @'01 HI 0kz)- 

Let us now examine the spin-1 chain with N sites and periodic bound- 
ary conditions in the limit N ~ oo. For that we need some integration rules. 
Using 

1 
I~tiV j - -  UiUjl 2 --~-~ (1 - t 2 ,  't2j) (3.4) 

s2 dt2 t21' t2 = 0 (3.5) 

- I t 2  f s2d t2 ( t2~ t2) (Q ' t22) -5  1"t22 (3.6) 
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where s = (cos 0 i sin ~b~, sin 0~ sin ~b~, cos ~bi), it follows that 

f jF I  1 j -1  [HkVk+l - -Dkblk+ 112 H d ~ t  
k=i  l=i+1 

2 - i  (1--(2k's  1--I dl2~ 
k=i  l=i+1 

=2~_ ,. 1 -  - f2~'s (3.7) 

The first thing we shall calculate is 

<~'i,/+ 1 I HI G , i + l  > = < ~'i,,+ 1 I Pi , ,+ l  I ~'/,,+ 1 > = lIP~,i+ 1 ~ ,~+  1 II 2 

We shall set ~ =  1, f l=0 .  Then, according to (1.8), we obtain 

P,, ,+ l (ui_  l y e -  v i_  lu,)  u,u~+ l(u~+ l v ,+  ~ - v,+ lug+ 2) 

1 2 2 
= ~ U i  l (H2Hi+l l ) i+l '~-UiViH2+1)I ) i+2--1) i - lUiUi+11) i+2 

I bl {U 2"2 .~_4UiVibli+lUi+l_}_ 2 2 - - - -  I) i Hi+ l)Hi+ 2 6 i--l', iU i+l  

1 

~---: X ( f f2 i -1  ..... ~i+2)  (3.8) 

By integration o v e r  d~i+3, d~'2i+4,... , dg2~_ 2 we get 

LIPi, i+ l ~b i, i+ 1112 = f d ~ i _  1"'" dOi+ 2 I X ( O i -  1 ..... Qi+ =l= 

•  (3.9) 

Since (--1/3) N-4 decreases exponentially for N ~  ~ ,  we can neglect this 
term and get 

IhPi, i+ l ~O i, i+ ll[= 

= f dg2i- 1"" ds + 2 ]X(f2i-  1 ..... ~-~i + 212 

(~ 1 1 1 1 1 1 1 1 1 1 ( ~  1 1 1 1 1) 1 
= 2 5 " 3 ' g ' 5 + 5 " 3 ' 3 " ~ + 3 - ~ '  ~ " 3 + 1 6 3 " g + 3 " -  ~ "~ 

1 1 1 . 5 . 5 ) _ 5 _ _ 1  = 5 1 
+ 4 2 2 ' 3  6 2 J 2  N - 3  5 6 2  N - 2  (3.10) 
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Next we calculate (0i, i+l l~i , i+a) .  By integration over dOi+2, 
dOi+3,... , dOi_ 1 w e  get 

(Oi, i+llOi, i + l ) =  lUiJ2IUs+lt 2 1 - -  - -  ~ i ' O i + l  df2id(2i+ ~ 

(3.11) 

Again we can neglect (-1/3)~;---Tand obtain 

1 1 
(0i,~+ 11 0i, i+ 1 ) - 2N_1 4 (3.12) 

Similarly we get for (O~,~+ 110/+ 1,i+2) 

-2  u*uLdu,+~vi+2-vi+~ i+2) u~+lu,+2 

x (uivi+ 1 - vlui+ l) dOi dOi+ 1 dO~+2 (3.13) 

-- 21 - -2  f U/~ /"/~+ I t ) ~ l  b/~+ 2Ri+ l  L/i+ 2UiUi+ 1 d ~  i d o g +  1 d O  i+ 2 

1 1 1 1 1 1 
2 N - 2  2 6 2 2N--224 (3.14) 

It remains to calculate (q~,~+ 11 q~+,,i+~+ ~ ) for n >~ 2. 
After integration over all sites but i, i+  1, i + n ,  and i+  n + 1, we 

obtain, using (3.4), 

(~ti, i+l ]~ti+n,i+n+ l )  

' f  
-2~--z5_2 u ' u *  l (u i+ .v i+ .+  +1)* i+ 1 - -  T ) i+nUi+n  

X dO idOi+ 1 d~'-2i+ n dg'2i+ n + 1 (3.15) 

- -  U i U i + l U i + n U i + n + t U i + n U i + n + l l d i ~ ) i + n  = ~---.S~ 1 * * * * 

X dO idOi+ 1 dOi+ n dOi+ n + 1 (3.16) 

+ ~ - = 5  2 - ~,*u*d~,+~v,+.+~=v,+.u,+.+x)* 

X UiWnlgiq_n+ 1(/,/iV/+ I --  ViUi+  1 {Ui+ 1 ~)i+n - -  Ui+ lUi+ nl 2 

x dOi doe+ IdOi+ 1 dOi+.  + 1 (3.17) 
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• ui+ l v i+,v*+ l u*+n d~2i d~ i+  1 dgJi+ ~ d~2~+, + 1 

Ll~Ui~+ l ~)i+nl~i+n+ lbt i+nLli+n+ l~l '~i+ l 

[since (3.16) = 0] 

(3.18) 

- 1  ( ~ )  n 2  N-3 . . . .  2 1 1 1 1 2  " 6 ' -62  = 2 u-21 ~ (  _ ~)n (3.19) 

Looking at (3.12) and (3.14), we see that (3.19) is also valid for n = 0  and 
n = 1. We must now calculate the highest eigenvalue of the matrix 
M,j= ( -1 /3)  li JI, i, j e Z .  That is an easy task. The corresponding eigen- 
vector is c i = ( - 1 )  i ( ieZ),  and from 

M u c j = c i + ( - 1 )  i + ( - 1 ) '  ~ =2G (3.20) 
j ~ Z  j = i + n  j=  - -~  

it follows that the highest eigenvalue is 2. We get for the energy gap 
therefore the upper bound 

5 8  5 
~<562 14 0.3571428 (3.21) 

and we have proven the following. 

Table I. Spin-1 Chain wi th  Free Boundary Conditions 

Eigenvalue of first 
Number  of sites excited state Total spin 

3 0.5 2 
4 0,448956 2 
5 0,413240 2 
6 0,398451 2 

Table II. Spin-1 Chain wi th  Periodic Boundary Conditions 

Eigenvalue of first 
Number  of sites excited state Total spin 

4 0.333333 1 
5 0.453957 1 
6 0.347866 1 
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Table III. Chain of Four Sites wi th  Free Boundary 
Condit ions for Higher Spins per Site 
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Eigenvalue of first 
Spin per site excited state Total spin 

1 0.448956 2 
3/2 0.427345 4 
2 0.418759 6 

5/2 0.414143 8 

Table IV, Lattices in Figs. 1 and 2 wi th  Spin 3/2 per Site 

Eigenvalue of first 
Lattice Spin per site excited states Total spin 

Fig. 1 3/2 0.180196 4 
Fig. 2 3/2 0.7 1 

Fig. 1. Sublattice of the hexagonal lattice containing four sites. 

Fig. 2. The same lattice as in Fig. 1, but with closed boundary conditions. The coordination 
number  at each site is 3. 

822/52/3-4-8 
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Theorem 3.1. 
Then 

Let •I,N be the energy gap of  Hs, N with spin S = 1. 

lim el, N ~ 5/14 (3.22) 
N ~  

Compar ing  this result with the numerical values in Table II, we see that  
this upper  bound  is very good. The value for five sites is much  higher than 
the values for an even number  of sites. The reason is some kind of 
frustration: We have seen that  the best superposit ion of the crackion is the 
one with alternating signs. But this is impossible for an odd  number  of 
sites. 

If we look at the numerical  results with free bounda ry  conditions in 
Tables I, III ,  and IV, we see that  in these cases in the first exicted state the 
free spins and the spin 1 of the crackion together form the highest possible 
total spin. For  the hexagonal  and the square lattice one can show by 
r a n d o m  walk technique as in ref. 2 that 

(~01 ~k,)/(~k~j I ~0 ) (3.23) 

decays exponential ly with the distance of the links ( i ,  j )  and (k,  I) .  
Therefore these terms are the matrix elements of a bounded  opera tor  with 
finite highest eigenvalue. Thus we get an energy gap at least in the crackion 
approximation.  
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